National Trade Measurement Amendment Regulation 2012 (No. 1)'

Select Legislative Instrument 2012 No. 302

I, QUENTIN BRYCE, Governor-General of the Commonwealth of Australia, acting with the advice of the Federal Executive Council, make the following regulation under the National Measurement Act 1960.

Dated 6 December 2012

QUENTIN BRYCE
Governor-General

By Her Excellency’s Command

GREG COMBET
Minister for Industry and Innovation
Section 1

1 Name of regulation
This regulation is the National Trade Measurement Amendment Regulation 2012 (No. 1).

2 Commencement
This regulation commences on 1 January 2013.

3 Amendment of National Trade Measurement Regulations 2009
Schedule 1 amends the National Trade Measurement Regulations 2009.

Schedule 1 Amendments
(section 3)

[1] Paragraph 5.6 (b)
substitute
(b) electricity meters installed before 1 January 2013;
(ba) electricity meters installed on or after 1 January 2013, other than electricity meters that measure less than 750 MWh of energy per year;

[2] Paragraph 5.6 (d)
substitute
(d) water meters installed on or after 1 July 2004, other than cold water meters with a maximum continuous flow rate capacity of not more than 4 000 litres per hour.
[3] **Schedule 1, Part 3, Division 2, clause 1**

substitute

1 For in-service inspection of instruments with digital indication, add 0.5 scale interval to the maximum permissible error for in-service inspection that applies to an analog instrument.

1A However, item 1 does not apply to an instrument with digital indication if the scale interval for the instrument is less than or equal to 0.2 dm².

[4] **Schedule 1, Part 3, Division 6, clause 5**

substitute

5 The maximum permissible error for any load equal to or greater than the minimum capacity and equal to or less than the maximum capacity in automatic operation is:

(a) if the national instrument test procedures that apply to catch weighers eliminate the need for digital rounding—the maximum permissible error set out in table 13 minus a verification scale interval of 0.5 e; or

(b) in any other case—set out in table 13.

Note The national instrument test procedures are defined in the Act and are available at www.nmi.gov.au.

[5] **Schedule 1, Part 3, Division 11**

omit

Table 1 **Maximum permissible errors for water meters**

insert

Table 17 **Maximum permissible errors for water meters**
[6] Schedule 1, Part 3, after Division 11

insert

Division 12 Electricity meters

1 In this Division:
 \(I_b \), for an electricity meter of a kind mentioned in clause 3, is the basic current.
 \(I_{\text{max}} \), for an electricity meter of a kind mentioned in clause 3 or 4, is the maximum current.
 \(I_n \), for an electricity meter of a kind mentioned in clause 4, is the nominal current.

Accuracy classes

2 Electricity meters are classified into the following accuracy classes:
 (a) 0.2;
 (b) 0.5;
 (c) 1;
 (d) 1.5.

Maximum permissible errors—direct-connected electricity meters

3 The maximum permissible errors for the following kinds of electricity meters are set out, for an item, in columns 4 and 5 of table 18:
 (a) single phase direct-connected electricity meters with an accuracy class mentioned, for the item, in column 4 or 5 of that table;
 (b) polyphase direct-connected electricity meters with an accuracy class mentioned, for the item, in column 4 or 5 of that table.

4 The maximum permissible errors mentioned in column 4 or 5 of table 18 apply at the current rate and power factor mentioned, for an item, in column 2 and 3 of that table.
Table 18 Single phase and polyphase direct-connected electricity meters

<table>
<thead>
<tr>
<th>Item</th>
<th>Current range</th>
<th>Power factor</th>
<th>Maximum permissible error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Accuracy class 1</td>
</tr>
<tr>
<td>1</td>
<td>0.05 I_b ≤ I < 0.1 I_b</td>
<td>1</td>
<td>±1.5%</td>
</tr>
<tr>
<td>2</td>
<td>0.1 I_b ≤ I ≤ I_max</td>
<td>1</td>
<td>±1.0%</td>
</tr>
<tr>
<td>3</td>
<td>0.1 I_b ≤ I < 0.2 I_b</td>
<td>0.5 inductive</td>
<td>±1.5%</td>
</tr>
<tr>
<td>4</td>
<td>0.1 I_b ≤ I < 0.2 I_b</td>
<td>0.8 capacitive</td>
<td>±1.5%</td>
</tr>
<tr>
<td>5</td>
<td>0.2 I_b ≤ I ≤ I_max</td>
<td>0.5 inductive</td>
<td>±1.0%</td>
</tr>
<tr>
<td>6</td>
<td>0.2 I_b ≤ I ≤ I_max</td>
<td>0.8 capacitive</td>
<td>±1.0%</td>
</tr>
</tbody>
</table>

Maximum permissible errors—transformer-operated electricity meters

5 The maximum permissible errors for the following kinds of electricity meters are set out, for an item, in columns 4, 5 and 6 of table 19:

(a) single phase transformer-operated electricity meters with an accuracy class mentioned, for the item, in column 4, 5 or 6 of that table;

(b) polyphase transformer-operated electricity meters with an accuracy class mentioned, for the item, in column 4, 5 or 6 of that table.

6 The maximum permissible errors mentioned in column 4, 5 or 6 of table 19 apply at the current rate and power factor mentioned, for an item, in column 2 and 3 of that table.

Table 19 Single phase and polyphase transformer-operated electricity meters

<table>
<thead>
<tr>
<th>Item</th>
<th>Current range</th>
<th>Power factor</th>
<th>Maximum permissible error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Accuracy class 0.2</td>
</tr>
<tr>
<td>1</td>
<td>0.01 I_n ≤ I < 0.05 I_n</td>
<td>1</td>
<td>±0.4%</td>
</tr>
<tr>
<td>2</td>
<td>0.02 I_n ≤ I < 0.05 I_n</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Item</td>
<td>Current range</td>
<td>Power factor</td>
<td>Maximum permissible error (%)</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Accuracy class 0.2</td>
</tr>
<tr>
<td>3</td>
<td>$0.05 I_n \leq I \leq I_{max}$</td>
<td>1</td>
<td>$\pm0.2%$</td>
</tr>
<tr>
<td>4</td>
<td>$0.02 I_n \leq I < 0.1 I_n$</td>
<td>0.5 inductive</td>
<td>$\pm0.5%$</td>
</tr>
<tr>
<td>5</td>
<td>$0.02 I_n \leq I < 0.1 I_n$</td>
<td>0.8 capacitive</td>
<td>$\pm0.5%$</td>
</tr>
<tr>
<td>6</td>
<td>$0.05 I_n \leq I < 0.1 I_n$</td>
<td>0.5 inductive</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>$0.05 I_n \leq I < 0.1 I_n$</td>
<td>0.8 capacitive</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>$0.1 I_n \leq I \leq I_{max}$</td>
<td>0.5 inductive</td>
<td>$\pm0.3%$</td>
</tr>
<tr>
<td>9</td>
<td>$0.1 I_n \leq I \leq I_{max}$</td>
<td>0.8 capacitive</td>
<td>$\pm0.3%$</td>
</tr>
</tbody>
</table>

[7] Schedule 2, Part 1, subitems 5.1 to 5.3

substitute

5.1 Fuel dispensers used for petroleum products other than LPG
5.2 Flow meters used for petroleum products
5.3 Flow meters used for liquids other than petroleum products

[8] Schedule 2, Part 1, subitems 10.1 and 10.2

substitute

10.1 Fuel dispensers used for LPG, other than cryogenic liquids
10.2 Flow meters used for LPG, other than cryogenic liquids

[9] Schedule 2, Part 1, subitems 15.1 to 15.3

substitute

15.1 Grain
15.2 Cane sugar
15.3 Wine grapes
Note