Radiocommunications (Low Interference Potential Devices) Class Licence Variation 2005 (No. 1)

The AUSTRALIAN COMMUNICATIONS AND MEDIA AUTHORITY makes this Variation under section 134 of the Radiocommunications Act 1992.

Dated 18th August 2005

LYN MADDOCK
Chair

C. CHEAH
Deputy Chair

Australian Communications and Media Authority

1 Name of Variation
 This Variation is the Radiocommunications (Low Interference Potential Devices) Class Licence Variation 2005 (No. 1).

2 Commencement
 This Variation commences on the day after it is registered.

3 Variation of Radiocommunications (Low Interference Potential Devices) Class Licence 2000
 Schedule 1 varies the Radiocommunications (Low Interference Potential Devices) Class Licence 2000.
[1] After section 3, note

substitute

NOTE

A radiocommunications device supported under this Class Licence can be expected to be operating in radiofrequency spectrum also used by other radiocommunications devices (that is, it shares the spectrum with them). Devices supported under this Class Licence are typically used for communications over short distances.

By placing appropriate limits on parameters such as device type, radiated power levels and frequencies of operation, the interference potential of a low interference potential device (LIPD) may be held to a sufficiently low level that enables sharing the spectrum with other radiocommunications devices on an uncoordinated basis in most circumstances.

It is recognised that interference arising from the operation of a LIPD is still possible, although under less likely circumstances. As an aid to interference resolution in those circumstances, it is a condition of the operation of a device under this Class Licence that the device not cause interference to other radiocommunications devices; as well, a device will not be afforded protection from interference caused by other radiocommunications services (see paragraph 4 (1) (b) and Note 1 after section 4 of this Class Licence).

Should interference occur, the onus is on the user of a LIPD to take measures to resolve that interference, for example, by re-tuning or ceasing to operate the LIPD. Some LIPDs are designed so that they are able to be re-tuned, to assist the user in avoiding interference locally.

Some of the frequency bands mentioned in this Class Licence cover bands designated for industrial, scientific and medical (ISM) applications. ISM applications generate radio frequency energy and use it locally for non-radiocommunications applications (eg. microwave ovens). Radiocommunications services operating in ISM-designated bands may experience interference from ISM applications. In accordance with the internationally-recognised arrangements for interference resolution that apply in such bands, this Class Licence notes that radiocommunications devices operating in ISM-designated bands are not afforded protection from interference that may be caused by ISM applications (see Note 2 after section 4 of this Class Licence).

LIPDs are sometimes used for radio applications with commercial or safety-of-life implications. Users of such applications are encouraged to have particular regard to the suitability of operating under this Class Licence for their radiocommunications needs.

Some applications of LIPDs require that a device meet additional physical or technical requirements outside the scope of this Class Licence. The use, marketing and supply of such devices in Australia may be dependant on the approval of the appropriate regulatory body, such as the Therapeutic Goods Administration or State Government Authorities.

Manufacturers and suppliers of radiocommunications products able to be supported under this Class Licence are encouraged to have regard to the information in this note when forming advice about the suitability of their products for the intended application of the products by customers.
[2] Schedule 1, item 19

substitute

19 All transmitters 2400–2483.5 10 mW

[3] Schedule 1, item 44

substitute

44 Radio Local Area Network transmitters used indoors 5150–5250 200 mW (averaged over the entire transmission burst) 1. If the emission bandwidth is 1 MHz or greater, the radiated power spectral density in any 1 MHz is limited to 10 mW per MHz.

2. If the emission bandwidth is less than 1 MHz, the radiated power spectral density in any 4 kHz is limited to 40 µW per 4 kHz.

44A Radio Local Area Network transmitters used indoors 5250–5350 200 mW (averaged over the entire transmission burst) 1. If the emission bandwidth is 1 MHz or greater, the spectral density in any 1 MHz is limited to 10 mW EIRP per MHz.

2. If the emission bandwidth is less than 1 MHz, the spectral density in any 4 kHz is limited to 40 µW EIRP per 4 kHz.

3. From 1 January 2006 devices operated for the first time must use Dynamic Frequency Selection (DFS) and Transmit Power Control (TPC). If TPC is not used then the maximum EIRP is limited to 100 mW.
Schedule 1 Variations

[4] Schedule 1, after item 47

insert

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Frequency</th>
<th>Power</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>Medical implant communications systems transmitters</td>
<td>402–405</td>
<td>25 µW (averaged over the transmission burst within a reference bandwidth of 300 kHz)</td>
<td>1. The maximum EIRP applies outside the body.
2. Systems must have a minimum of nine channels selectable by the system controller and spread across the whole band.
3. Implanted transmitters must only transmit under external control, except for medical implant events.
4. Systems must utilise a listen-before-transmit protocol.</td>
</tr>
<tr>
<td>49</td>
<td>Medical implant telemetry systems transmitters</td>
<td>403.560–403.760</td>
<td>100 nW</td>
<td>The maximum EIRP applies outside the body.</td>
</tr>
<tr>
<td>50</td>
<td>Data communications transmitters</td>
<td>59400–62900</td>
<td>150 W peak</td>
<td>1. Transmitters are limited to land and maritime deployments.
2. Maximum total peak transmitter power output is 10 mW.</td>
</tr>
<tr>
<td>51</td>
<td>Frequency hopping transmitters</td>
<td>915–928</td>
<td>1 W</td>
<td>A minimum of 25 hopping frequencies must be used.</td>
</tr>
<tr>
<td>52</td>
<td>Frequency hopping transmitters</td>
<td>2400–2483.5</td>
<td>500 mW</td>
<td>A minimum of 15 hopping frequencies must be used.</td>
</tr>
</tbody>
</table>

Note 1 The systems and associated medical implant communications systems transmitters mentioned in item 48 are devices that require marketing approval by the Therapeutic Goods Administration.

Note 2 A medical implant event is an occurrence or lack of occurrence, recognised by a medical implant device or a health care professional, that requires the immediate transmission of data by the medical implant communications systems transmitter to protect the safety or wellbeing of the person that the medical implant device has been implanted.
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Frequency Range</th>
<th>Power</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>Frequency hopping transmitters</td>
<td>2400–2483.5</td>
<td>4 W</td>
<td>A minimum of 75 hopping frequencies must be used.</td>
</tr>
<tr>
<td>54</td>
<td>Frequency hopping transmitters</td>
<td>5725–5850</td>
<td>4 W</td>
<td>A minimum of 75 hopping frequencies must be used.</td>
</tr>
</tbody>
</table>