Gazette

Published by the Commonwealth of Australia

GOVERNMENT NOTICES

COMMONWEALTH OF AUSTRALIA

Section 708
Offshore Petroleum and Greenhouse Gas Storage Act 2006

APPLICATION FOR GRANT OF A PIPELINE LICENCE

I, **TERRENCE JOHN MCKINLEY**, Delegate of the National Offshore Petroleum Titles Administrator, on behalf of the Commonwealth–Western Australia Offshore Petroleum Joint Authority hereby give notice pursuant to section 708 of the *Offshore Petroleum and Greenhouse Gas Storage Act 2006* that an application has been received from

Woodside Energy Ltd. (ABN 63 005 482 986)

Mitsui E&P Australia Pty Ltd (ACN 108 437 529)

for the grant of a pipeline licence for the conveyance of petroleum in the offshore area of Western Australia, as set out below.

This notice takes effect on the day in which it appears in the *Australian Government Gazette*.

Made under the *Offshore Petroleum and Greenhouse Gas Storage Act 2006* of the Commonwealth of Australia.

TERRY MCKINLEY
DELEGATE OF THE TITLES ADMINISTRATOR
ON BEHALF OF THE COMMONWEALTH–WESTERN AUSTRALIA
OFFSHORE PETROLEUM JOINT AUTHORITY

ROUTE OF THE PIPELINE

The pipeline route is described in the table hereunder, commencing at the tie-in flange for the Laverda Area high boost subsea multi-phase pump (MPP) station and ending at the Remote Emergency Shut-Down Valve (RESDV) on the *Ngujima Yin* FPSO. Coordinates are based on Geodetic Datum of Australia (GDA94).

Main Pipeline						
	Feature Name	KP*	Easting (mE)	Northing (mN)	Bend Radius (m)	
1	Start Point	0	173 111	7 617 098		
2	Tangent Point (TP) 1	2.911	175 758	7 618 118		
3	Intersection Point (IP) 1		176 973	7 618 576		
4	TP 2	5.344	177 503	7 619 745		
5	TP 3	9.437	179 192	7 623 473		
6	IP 2		179 971	7 625 191		
7	TP 4	12.825	181 854	7 625 289		
8	TP 5	13.334	182 363	7 625 316		
9	IP 3		182 751	7 625 336		
10	TP 6	14.107	183 121	7 625 452		
11	TP7	16.946	185 833	7 626 295		
12	IP 4		186 442	7 626 484		
13	TP 8	18.204	190 135	7 628 877		
14	TP 9	20.309	188 526	7 628 266		
15	IP 5		189 221	7 628 860		
16	TP 10	22.064	190 135	7 628 877		
17	TP 11	26.614	194 684	7 628 963		
18	IP 6		195 399	7 628 976		
19	TP 12	28.007	196 016	7 628 617		
20	End Point	28.410	196 708	7 628 306		

^{*} KP=Kilometre Point

SPECIFICATIONS

Design and Construction

The offshore pipeline must be designed and constructed in accordance with Offshore Standard DNV-OS-F101 – Submarine Pipeline Systems (Offshore Pipeline), which is incorporated in its entirety in Australian Standard AS2885.4 – Pipelines, Gas and Liquid Petroleum (Part 4: Submarine Pipelines). Specifically, the design and construction phase of the pipeline must comply with DNV-OS-F101.

Basis of Design

The pipeline design is based on the following parameters:

Item	Item Description	Details	
1	Design and Construction	Offshore Standard DNV-OS-F101 – Submarine Pipeline	
		Systems (Offshore Pipeline), which is incorporated in its	
		entirety in Australian Standard AS2885.4 – Pipelines,	
		Gas and Liquid Petroleum (Part 4: Submarine Pipelines).	
2	Outside diameter of pipe and riser	16" rigid pipeline: 406 mm	
3	Wall thickness of pipe and	16" rigid pipeline: 21.44 mm	
	riser (carbon steel)	Buckle arrestor pipes: 23.83 mm	
5	Length	31 km (approximate)	
6	Design life	20 years (approximate)	
7	Pipeline Material	Carbon Steel Linepipe	
8	Pipeline and Riser Steel Grade	DNV-OS-F101 Grade 450S	
9	Maximum Allowable	16" rigid pipeline: 25.5 MPag	
	Operating Pressure	10" flexible production riser: 25.3 MPag	
		11" flexible production jumper: 34.5 MPag	
10	Minimum yield strength of	16" rigid pipeline: 450 MPa	
	pipe steel	10" flexible production riser:	
11	D : G :	11" flexible production jumper: 450 MPa	
11	Design Capacity	Peak oil rate: 60 kstb/d	
		Peak produced water rate: 104 kstb/d	
12	Maximum Operating	Peak liquid rate: 111 kstb/d	
12	Maximum Operating Temperature	16" rigid pipeline: 86 C	
	Temperature	10" flexible production riser: 75°C	
		11" flexible production jumper: 86°C	
13	Maximum Design	16" rigid pipeline: 92°C (5 km upstream and downstream	
	Temperature	of the Cimatti tie-in)	
		10" flexible production riser: 75°C	
		11" flexible production jumper: 86 °C	
14	Minimum Design	16" rigid pipeline: -11 °C	
	Temperature	10" flexible production riser: -10°C	
		11" flexible production jumper: -11°C	

15	Characteristics of substance proposed to be conveyed	Commingled petroleum (intermediate to heavy 19 API biodegradable oil
16	General plans and descriptions of pump stations, tank stations or valve stations and their equipment	To be confirmed.
17	General plans and description of pigging facilities	Subsea to subsea pigging capability is incorporated into the design via in-line connection onto each FLET on the 16" rigid flowline onto which a subsea pig launcher and receiver will periodically be connected.
18	Cathodic Protection	A sacrificial cathodic protection system will be installed on the main 16" pipeline and in-line structures. Full shell bracelet Aluminium Indium Alloy anodes will be strapped directly onto the pipeline and the MLPP coating will be bare in this section. Anode design and supply will be in accordance with DNV-RP-F103.